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Connes’ Distance Function for Commutative and
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By formulating the concept of a graph algebraically, i.e., as properties of the
algebra of functions over the set of vertices and the set of edges, we arrive at a
purely algebraic concept of distance related to the one proposed by Connes for
manifolds which easily extends also to the noncommutative case. The Dirac
operator used in Connes’ approach is replaced by a generalized difference operator
which can be defined on arbitrary graphs. We speculate on the question of how
this operator might be related to the concept of a Dirac operator on graphs.

1. INTRODUCTION

Ever since the work of Connes on noncommutative geometry (Connes,
1994) many mathematical structures have been reformulated algebraically
and their noncommutative counterparts examined. One of the simplest mathe-
matical structures beyond that of a pure set is the notion of a graph. Special
cases include lattices and clusters, which are frequently used in physics to
replace continuous space or spacetime. It therefore seems natural to quantize
also graphs along the ideas of Connes.

Despite the simplicity of the concept of a graph, it already implies some
interesting structures, among them the notion of a distance d(k, l) between
two vertices k and l. This distance is defined as the length of the shortest
path in the graph connecting the two vertices.

Recently, there has been some interest in reformulating this distance
function on a graph using the notion of distance as defined by Connes for
manifolds (Bimonte et al., 1994; Atzmon, 1996; Dimakis and Müller-Hoissen,
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1998). Connes defines the geodesic distance between two states v1 and v2

over an algebra ^, characterizing a topological manifold, as

d(v1, v2) 5 sup{.v1 ( f ) 2 v2( f ).; for f P ^ with |[D, f ]| # 1} (1)

where D denotes a Dirac operator acting on ^ [or rather an unbounded, self-
adjoint operator such that (1 1 D)21 is compact]. We shall show in the
following that this definition of a geodesic distance has a natural analog
for graphs.

A first step toward an algebraic formulation of distance between two
states on a graph involving functions f P ^V , where ^V is the (commutative)
algebra of complex functions on the set of vertices, is the following:

d(v1, v2); eq sup{.v1 ( f ) 2 v2( f ).;f P ^V , such that (2)

.f( p) 2 f(q). # 1 if p and q are nearest neigbors}

For pure states, i.e, states v for which v( f ) 5 f(k) for some vertex k, this
definition is obviously equivalent to the length of the shortest path. However,
the condition .f( p) 2 f(q). # 1 if p and q are nearest neigbors makes explicit
reference to neighbored vertices of the graph. If the notion of distance admits
a noncommutative analog, this condition should be reformulated algebraically,
i.e., by using appropriate operators acting on the function spaces over a graph.
In Connes’ approach the Dirac operator is used to define bounds on the slope
of a function f on a manifold. However, for graphs there exist more natural
structures to formulate this condition algebraically. This will be elaborated
in this article.

In Section 2, we list the definition of a graph which seems most appro-
priate for an algebraic formulation. In Section 3 the algebraic formulation of
a graph is given as well as the counterpart of Connes’ distance function for
arbitrary graphs. In Section 4 we briefly sketch how a graph may be reobtained
from its algebra. Some comments on the operator D involved in this definition
and its possible relation to the notion of a Dirac operator on graphs are
contained in Section 5.

2. GRAPHS

The following definition of a graph as well as certain properties of
graphs seem most appropriate for an algebraic formulation and a noncommu-
tative extension.

A (general directed) graph consists of a set of vertices V, a set of edges
E, and two mappings 6: E → V (see, e.g., Encyclopaedic Dictionary of
Mathematics, 1986). The image of an edge e P E under + (2) will be
called the final (initial) end vertex of e. We will always assume the sets V
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and E to be finite or countable. One may impose further constraints on the
mappings 6 by the requirements

+(e) Þ 2(e), ∀e P E

and

{+(e1), 2(e1)}, Þ {+(e2), 2(e2)} for any two e1 Þ e2 P E

In this way one arrives at so-called simple graphs, i.e., graphs without loops
and multiple connections between two vertices. These constraints, however,
will not be necessary for the following construction.

The above relations define a directed or oriented graph, i.e., each edge
comes with a natural direction. In general, one may obtain undirected graphs
from directed graphs by defining an equivalence relation. This will not be
done here. Instead, we define an undirected simple graph to be a set of
vertices V together with a symmetric, nonreflexive relation E , V 3 V. Such
a graph may be represented by its adjacency matrix, which for k, l P V is
defined by

Akl 5 H1 if (k, l) P E
0 otherwise

(3)

A path on a graph connecting two vertices v and v8 is defined to be a sequence
of vertices {k0 5 v, k1, k2, . . . , kN 5 v8} such that (ki21, ki) P E for all i 5
1, . . . , N. Here N is called the length of the path. The distance d(k, l) between
two vertices k and l is equal to the length of the shortest path connecting k
and l.

3. ALGEBRAIC FORMULATION OF A GRAPH AND THE
DISTANCE FUNCTION

Let us now formulate the notion of a graph in terms of the function
spaces over V and E.

Let ^V and ^E be the spaces of complex-valued functions over V and
E, respectively. Both function spaces form a commutative C*-algebra with
respect to pointwise (or edgewise) multiplication, complex conjugation, and
the supremum norm. The two mappings 6 now induce two mappings D6:
^V → ^E by

(D6f )(e) 5 f (6e) (4)

for any f P ^V and any e P E.
We also define the mapping
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D: ^V → ^E with D 5 D+ 2 D2 (5)

This operator, which represents a kind of difference operator, will replace
the Dirac operator in Connes’ notion of distance. In the final section we will
make some comments on how this operator may be related to the notion of
a Dirac operator on graphs or lattices.

Connes’ distance functional defines a distance for states, where a state
v is a linear, positive, normed functional on ^V , i.e., for any two f, g P ^V

and a, b P C we have

v(af 1 bg) 5 av( f ) 1 bv(g)

v( f *f ) $ 0

|v| 5 1, where |v| 5 sup
| f |51

{.v( f ).}

(We may also define states over ^E , but this is not required for our construc-
tion. See, however, the remarks in the final section.) States form a convex
set, i.e., for any two states v1 and v2 also v 5 av1 1 (1 2 a)v2(0 # a #
1) is a state. Pure states are those states which cannot be represented as a
nontrivial combination of other states. The pure states are in one-to-one
correspondance with the set V, i.e., for each v P V there is a pure state vv with

vv( f ) 5 f (v) (6)

Having defined the preliminaries, we now formulate the notion of a
distance between two states. Let V be the set of vertices of an undirected
graph and A be its adjacency matrix. Asign an arbitrary direction to each
line, making the graph a directed graph with mappings 6. Although the
definition of distance requires the mappings D6 and therefore a directed
graph, it will be obvious that the distance does not depend on the chosen
directions and hence is a property of an undirected graph.

For any two states v1 and v2 we define

d(v1, v2) 5 sup{.v1( f ) 2 v2( f ).; for f P ^ with |Df | # 1} (7)

to be the distance between these two states. Since Df (e) 5 f (+(e)) 2 f (2(e)),
the condition |D # 1| implies that the maximum is taken with respect to all
functions which differ between neighbored points in absolute value by not
more than 1.

As the definition of d(v1, v2) depends only on the absolute value |Df |,
this definition of distance does not depend on the choice of directions, i.e.,
it is well defined for an undirected graph.

Furthermore, for a graph with several components and v1 and v2 having
their support on different components, the above definition of distance yields
infinity, in accordance with the usual convention.
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A similar distance functional has also been mentioned by Dimakis and
Müller-Hoissen, 1998 (with reference to Dimakis and Müller-Hoissen, 1994)
by defining a first-order differential calculus for the set of vertices of a graph.
Our proposal here, however, makes the set of vertices and the set of edges
of a graph the starting point. The formulation above only refers to the graph
algebra—i.e., there is no explicit reference to the vertices or lines of the
graph—so that the extension to noncommutative graph algebras (see below)
is straightforward. Furthermore, in the final section we will comment on the
possibility of relating D to a self-adjoint operator with the possible interpreta-
tion of a Dirac operator on a graph.

4. RECONSTRUCTION OF A GRAPH FROM ITS ALGEBRA

In the previous sections we summarized the definition of a graph and
how an algebraic formulation may be derived. In this section we briefly
sketch the reverse way. We start from an algebraic definition and derive the
graph. This concept then may be generelized to a noncommutative formulation
of graphs.

Algebraically, a (general directed) graph may be defined as two commu-
tative C*-algebras 9 and « with identity elements idV and idE , respectively,
together with two linear mappings D6: 9 → « satisfying the following
properties:

D6( fg) 5 D6( f )D6(g) (8)

D6(idV) 5 idE (9)

D6( f*) 5 D6( f )* (10)

These conditions are easily verified for the mappings D6: ^V → ^E defined
in the previous section [Eq. (4)]. Note that the second condition does not
necessarily follow from the first one, as D6 have not been required to be
“onto.” Furthermore, we have not required the mappings D6 to be C*-algebra
homomorphisms, as in general the norm is not preserved.

We now show how to reconstruct a graph from these conditions. Let V
and E be the set of pure states in the dual spaces 9* and «*, respectively.
The mappings D6 induce mappings D6: «* → 9*. Let v P «* and f P 9, then

(D6v)( f ) 5 v(D6( f )) (11)

We have to prove that the mappings D6 may be restriced to pure states, i.e.,
that D6 map pure states into pure states. This restriction then defines the
mappings 6: E → V of Section 2.
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It is easy to show from the conditions (8)–(10) that D6 map states into
states. For the proof that pure states are mapped into pure states, we make use
of the following characterization of a pure state in a commutative C*-algebra:

If v is a pure state over a commutative C*-algebra ^, then the elements
f P ^ for which v( f ) 5 0 are a maximal ideal (which by definition is not
equal to ^).

Now let v P V be a pure state and f P « satisfy

(D6v)( f ) 5 v(D6( f )) 5 0

For any g P « we therefore have

(D6v)( fg) 5 v(D6( fg)) 5 v(D6( f )D6(g)) 5 0

The last equality follows since v is a pure state and D6f is an element of
the maximal ideal satisfying v(D6f ) 5 0. Therefore, if v is pure, so is D6v.
This completes the reconstruction of the graph from its algebra.

Some of the requirements for a graph algebra, especially condition (8)
and the requirements of the C*-algebras having an identity element, may be
replaced by weaker conditions, in which case the proof that pure states are
mapped into pure states will become more elaborate.

5. COMMENTS

The presented purely algebraic formulation of a distance function on
arbitrary graphs seems almost canonical. It does not depend on any further
structures to be defined for a graph algebra. Furthermore, the algebraic settings
as presented here easily translate to noncommutative cases, thereby defining
the notion of a “noncommutative graph.”

However, there is an obvious disadvantage of the construction presented
above when compared to Connes’ distance function on manifolds: The opera-
tor D is not self-adjoint. Furthermore, one would like to relate this operator
to a kind of Dirac operator on graphs. Although the characterizing features
of a Dirac operator on graphs are far from being obvious, one property should
be that its square is related to the Laplace operator on graphs (see below).

The following ideas might sketch a way out of both problems. For
simplicity we restrict ourselves to graphs without loops and multiple connec-
tions, although most of the ideas easily generalize to arbitrary graphs. Let
us define a trace for ^V and ^E by

trV ( f ) 5 o
vPV

f (v) and trE(g) 5 o
ePE

g(e) (12)

where f P ^V and g P ^E. Algebraically, a trace may be defined as a linear
functional from ^V or ^E into the complex numbers with the following
properties (V/E means “V or E”):
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trV/E( f *f ) $ 0

trV/E( f1 f2) 5 trV/E( f2 f1)

trV/E(P( f )) 5 trV/E( f ) for all P P U(V/E )

where U(V ) and U(E ) denote the set of C*-algebra isomorphisms of ^V and
^E , respectively. For the commutative case of a graph algebra, U(V ) and
U(E ) are given by the permutations of vertices and lines, respectively.

The trace operation allows the definiton of a scalar product:

( f, g) 5 trV/E( fg) (13)

(For nonfinite but countable vertex or edge sets one might have to restrict
to square-summable functions, in which case the identity element is not part
of the algebra. Some of the foregoing statements will be more difficult do
prove, but these difficulties shall not concern us here.) Having a scalar
product, we may define the adjoint operator DT: ^E → ^V as usual. This
adjoint operator is usually referred to as the incidence matrix (see, e.g., Biggs,
1974). We now consider the direct sum & 5 ^V % ^E and define the operator

D̂ 5 10 DT

D 0 2 (14)

It can be shown that:

1. D̂ is self-adjoint,
2. The operator

D̂2 5 1DTD 0
0 DDT2

has the interpretation of a Laplacian,
3. For v1 and v2 states over ^V , the distance function

d̂(v1, v2) 5 sup{.v1( f ) 2 v2( f ).; for f P & with |D̂f | # 1} (15)

is equivalent to the distance function given above [Eq. (7)].

While the first and last statement are easily proven, the second one requires
perhaps a clarifying remark. First,

DTD 5 V 2 A (DTD: ^V → ^V)

where V is the valence matrix [for two vertices k, l we have Vkl 5 vkdkl, with
vk the valence (degree) of vertex k] and A the adjacency matrix. This matrix
is known to be the discrete analog of the Laplacian on ^V . Second,
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DDT 5 2 ? idE 2 AL (DDT: ^E → ^E)

where AL is a generalized adjacency matrix for a directed line graph (see,
e.g., Biggs, 1974), defined by

(AL)ef 5 5
1 e and f share a common vertex, and are both

incoming or outgoing
21 e and f share a common vertex, one is incoming,

the other outgoing
0 otherwise

This operator might be identified as the discrete analog of a Laplacian
for (longitudinal) vector fields (compare, Filk, 1988). Hence, one necessary
condition for the operator D̂ to be identified with a Dirac operator on a graph
is fulfilled. The above results indicate that if a natural concept of a Dirac
operator exists on arbitrary graphs (which is not at all self-evident), the two
operators D and DT will presumably be involved.

Two questions remain open: First, can the relation between D̂ and a
Dirac operator be made more precise? The Dirac–Kähler formulation of
fermions (Kaehler, 1962) might be of relevance here (see also Becher and
Joos, 1982). Second, what is the interpretation of the distance functional (15)
for pure states over ^E?
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